Mottak og bruk av ADS-B signaler fra fly

 103 total views

I denne artikkelen beskriver jeg hvordan det er mulig å ta imot radiosignaler fra fly med ADS-B meldinger, og hvilken informasjon disse meldingene inneholder.

(c) Anders Fongen, februar 2024

Fly i normal trafikk sender ut radiosignaler med meldinger om flight-id., posisjon, høyde, fart og retning. Dette skjer i et meldingsformat som kalles ADS-B og er en digital transmisjon på frekvensen 1080 MHz. Dette signalet brukes av luftkontrollen som supplement til radar, og tjenester som Flightradar24 benytter også i stor grad disse radiosignalene.

Kan du ha interesse av å bruke disse signalene? Selv har jeg planer om å bruke fly som reflektorer av radiosignaler, og på den måten utvide rekkevidden av VHF/UHF-signaler over horisonten. Da trenger jeg å vite hvordan antennen skal stilles for å peke mot flyet, og jeg må derfor vite hvor det befinner seg til enhver tid.

Hva du trenger for å motta ADS-B

  • En SDR mottaker av typen RTL-SDR. De finnes på Ebay fra en hundrelapp og oppover. De selges ofte som utstyr for å kunne motta digital TV på PC, men egner seg til mange andre formål også.
  • En Linux-maskin, gjerne en Raspberry Pi. Har du en gammel PC stående som ikke brukes og som har en USB port og nettverksadapter (WLAN eller Ethernet), så bruk gjerne den. Du vil trenge litt Linux-erfaring for å gjennomføre det som blir beskrevet her.
  • Noe gratis programvare som lastes ned fra Internet, bl.a. dump1090.

Oversikt over konfigurasjonen som skal vises her

  1. Radiosignalet fra fly mottas av SDR-dongelen som er koplet til en Linux-maskinens USB-port.
  2. Fra SDR går et “råsignal” (I/Q-signalet) til Linux-maskinen (grønn pil), hvor programmet dump1090 dekoder signalet og henter ut meldingene. Disse meldingene, gjengitt på såkalt SBS-1 format, sendes ut fra Linux-maskinen med TCP-protokoll på port 30003 (rød pil).
  3. Meldingene på SBS-1 format kan leses med et program som man kan skrive selv etter hvilke ønsker man har. Jeg har valgt å lage et Python-program for en Raspberry Pico W mikrokontroller som henter ut flyenes løpende posisjon (lengdegrad, breddegrad, høyde) og regne ut retningen til en direktiv antenne som skal følge flyet.
  4. Raspberry Pico lager elektriske signaler for å styre to motorer på et enkel platform (blå pil) for å stille inn ønsket retning og vinkel (azimuth og elevation).

Konfigurasjon av Raspberry pi (2)

Komponent (2) skal ta imot I/Q-signaler fra SDR-dongelen, dekode ADS-B meldingene som overføres, og presentere data på SBS-1 format gjennom en TCP-forbindelse. For dette trenges en enkel Linux-maskin som må konfigureres for dette formålet. Den følgende beskrivelsen tar utgangspunkt i en Raspberry Pi v.3, men fremgangsmåten blir nokså lik også for andre type Linux. Sørg for at Linux-versjonen er nylig oppdatert.

Følgende kommandoer kan gis for å installere drivere og dump1090-programmet:

$ sudo apt update
$ sudo apt upgrade
$ sudo apt install librtlsdr-dev
$ sudo apt install rtl-sdr
$ git clone https://github.com/antirez/dump1090.git dump1090
$ cd dump1090
$ make

Evt. feilmeldinger følges opp og rettes. På katalogen dump1090 ligger nå programmet dump1090 som startes med kommandoen ./dump1090 --net.

SDR-dongelen kan nå koples til maskinens USB-port og en egnet antenne, slik som vist på figuren. Deretter kan dump1090-programmet startes. Det gir ingen løpende utdata til skjermen, man overvåker utdata på metoden som er vist nedenfor.

Utdata fra dump1090

Som vist på figuren over har vi satt opp dump1090 til å sende ut data i SBS-1 format til TCP-port 30003. Med programmet netcat kan vi ta en titt på hvordan dataene ser ut, og gjøre oss opp en mening om hvordan de kan behandles. Ta en titt på denne videoen:

Det er i hovedsak opplysninger om posisjon og flight-id som er at interesse for denne anvendelsen, men data om retning og fart er også tilgjengelig.

Analyse av SBS-1 data og beregning av antenneretning (3)

Figuren over viser hvordan utdata fra dump1090 overføres via TCP-protokoll til alle som ønsker det (rød pil). Figuren viser derfor at flere ulike anvendelser kan hente disse dataene fra samme dump1090-instans.

I det eksperimentet som beskrives her, skjer denne bearbeidingen i en Raspberry Pico W, som er en mikrokontroller med WLAN-grensesnitt og som kan programmeres i Micropython. Programkoden i denne mikrokontrolleren kan deles i tre deler:

  1. Et hovedprogram som etablerer en TCP-forbindelse til dump1090-noden (2), kaller så på Python-moduler for analyse, beregning og antennestyring
  2. En modul for å analysere SBS-1 melding for posisjon og identifikasjon av fly, og for å beregne antenneretning til flyet.
  3. En modul som mottar opplysninger om antenneretning og styrer servomotorene på antenneplattformen i henhold til disse opplysningene.

1 – Hovedprogram

Hovedprogrammet initialiserer TCP-forbindelsen, WLAN-adapteret, I2C-bussen og oppretter nødvendige objekter for de påfølgende operasjonene. Slik ser programkoden ut:

from wlan_config import wlan_config # WLAN configuration module
from AzElPlatform import AzElPlatform # Az-El antenna control
from AzElCalculator import AzElCalculator
import socket
from machine import Pin, I2C
import ssd1306

# using default address 0x3C
# TODO change GPIO numbers if necessary
i2c = I2C(0,sda=Pin(8), scl=Pin(9))
display = ssd1306.SSD1306_I2C(128, 64, i2c)

# Configure wlan
wlan_config()

# Make network tocket and connect to ads-b listener
sock = socket.socket()

# TODO change IP address to the actual dump1090 node
sock.connect(("192.168.2.11",30003))

# Configure bearing calculator (lat,lon,alt)
# TODO Replace numbers with your own location
azelcalc = AzElCalculator(61.1353,10.4419,253)

# Initialize platform motor control
# TODO change numbers to your own use of GPIO ports
azelplat = AzElPlatform(16,17)

# Start reading ads-b messages
while True:
    message = sock.readline().decode()
    result = azelcalc.analyzeMessage(message)
    if result != None:
        print(result) # For debugging only
        
        # If flightId is present, send to OLED display
        flightId = result['flightid']
        if flightId != None:
            distance = int(result['distance']/1000)
            display.fill(0)
            display.text('%s-%d km'%(flightId,distance),5,8)
        else:
            display.fill(0)
        display.show()
        # Find azimuth and elevation from result
        azimuth = float(result['azimuth'])
        elevation = float(result['elevation'])
        # Point antenna in that direction
        azelplat.setDirection(int(azimuth),int(elevation))

Deler av programkoden styrer et OLED-display for å vise flight-id og avstand til fly som blir fulgt av antennen. Disse kan kommenteres bort om dette er uten interesse.

Modulen wlan_config som importeres her er presentert i en annen blogg-artikkel: WLAN-konfigurasjon i Raspberry Pico W. Der vises hvordan wlan-adapteret kan konfigureres uten å skrive nettverkspassordet inn i koden.

2 – Analyse og behandling av SBS-1 utdata, beregningav retning

Metoden analyzeMessage() i modulen AzElCalculator mottar en SBS-1 melding som parameter og henter ut flight-id og posisjonsdata fra den. Programmet beregner så retningen for en antenne som skal følge dette flyet, i form av horisontal og vertikal vinkel (Azimuth og Elevation). For denne beregningen brukes Python-modulen AltAzRange som kan hentes fra denne adressen. Programkoden for AzElCalculator ser slik ut (merk at noen av linjene er lange og er brukket i flere deler):

# Receive SBS-1 message, find position of aircraft and
# calculate azimuth and elevation for the direction to it
from AltAzRange import AltAzimuthRange
class AzElCalculator:
    def __init__(self,myLatitude,myLongitude,myAltitude):
        AltAzimuthRange.default_observer(myLatitude,myLongitude,myAltitude)
        self.airplane=AltAzimuthRange()
        self.flightId = [(None,None),(None,None),(None,None),(None,None),(None,None)]
        
    def analyzeMessage(self,messageLine):
        elements = messageLine.split(",")
        
        # ES Airborne Position Message
        if (elements[1] == '3'):
            icao = elements[4]
            altitude = elements[11]
            if altitude == '': return None
            latitude = elements[14]
            if latitude == '': return None
            longitude = elements[15]
            if longitude == '': return None
            self.airplane.target(float(latitude),float(longitude),float(altitude)*0.3048)
            # Observe that the position is not returned, only the direction
            result = self.airplane.calculate()
            result['icao'] = icao
            result['flightid'] = self.getFlightId(icao)
            return result
        # ES Identification and Category
        elif (elements[1] == '1'):
            icao = elements[4]
            flightid = elements[10].strip()
            if flightid == '': return None
            self.storeFlightId(icao,flightid)
            return None
        # ES Airborne Velocity Message
        elif (elements[1] == '4'):
            result = dict()
            result['icao'] = elements[4]
            result['groundspeed'] = elements[12]
            result['track'] = elements[13]
            result['flightid'] = self.getFlightId(result['icao'])
            # We can return the "result" object, but choose not to
            # return result # is this data is needed
            return None

    def storeFlightId(self,icao,flightId):
        if self.getFlightId(icao) == None:
            # Add flight id to list
            self.flightId.insert(0,(icao,flightId))
            self.flightId.pop() # Kill the oldest entry
    
    def getFlightId(self,icao):
        for (i,f) in self.flightId:
            if i == icao: return f
        return None

3- Styre en direktiv antenne mot flyet

Oppgaven med programmering av to servomotorer for å styre en antenne i to akser (horisontalt og vertikalt) skjer med modulen AzElPlatform som er presentert i en tidligere blogg-artikkel: Styring av servomotor fra Raspberry Pico og Micropython. For ordens skyld gjengis programkoden er:

# Python class to control a simple Azimuth-Elevation
# platform. It uses two SG90 servo motors for the two
# axes. Since they only rotate 180 degrees, the 180
# degree range of the elevation rotor is used to cover
# the left half (180-359 degrees) of the azimuth

from machine import Pin, PWM
class AzElPlatform:

    def __init__(self,azrotor, elrotor):
        self.azport = PWM(Pin(azrotor))
        self.elport = PWM(Pin(elrotor))

        self.azport.freq(50)
        self.elport.freq(50)

    def setDirection(self,az,el): # Angle in degrees
        # Check parameters: 0-359 and 0-90 allowed
        if not az in range(0,360): return
        if not el in range(0,91): return
        if az>180:
            az = az-180
            el = 180-el # Bend elevation backwards for left half
        # Experimentally established values for
        # Calculation of duty cycles corresponding
        # to rotor angles
        dutyAz = 7800 - az * 6600/180
        dutyEl = el * 7000/180 + 1200

        self.azport.duty_u16(int(dutyAz))
        self.elport.duty_u16(int(dutyEl))
Raspberry Pico W med OLED display viser flight-id NOZ191 med avstand 78 km og følger dette flyet med en direktiv antenne.

Oppsummering

I denne blogg-artikkelen har jeg presentert noen aktiviteter som inkluderer bruk av Software Defined Radio, avansert digital dekoding av radiosignaler fra fly, noe programmering og beregninger på posisjonsdata, og styring av servomotorer for antenner.

Mange av disse emnene vil være av interesse i andre anvendelser enn akkurat den som her er presentert. Bruk gjerne delløsningene i denne artikkelen til dine egne prosjekter, og send meg en melding om resultatene blir interessante.

Morsetrener på en Micro:Bit

 357 total views

Med dette utstyret kan man trene på sending og mottak av morsesignaler sammen med andre. Hver deltaker trenger en Micro:Bit (version 2), og programvaren finner du nederst på siden.

Her demonstrerer jeg hvordan Micro:Bit kan brukes for å sende og motta morse

Med morsealfabetet kan du sende og motta tekst ved å overføre korte og lange pipesignaler. På 1800-tallet kom telegraf-tjenesten i gang i Norge, fra nord til sør ble ledninger trukket som kunne overføre elektrisk strøm for dette formålet. Den gang fantes ikke radio, og heller ikke elektronikk som kunne overføre et talesignal. Profesjonelle operatører som var trent i bruk av morse sørget for at telegrammer ble sendt og mottatt, skrevet ned på papir med vanlige bokstaver og levert til mottakeren med bud.

Etter hver ble radiosenderen oppfunnet, men fortsatt uten muligheter for å overføre tale. Morsesignaler var også her i vanlig bruk mellom skip og til landstasjoner.

Da radioene ble utviklet til også å overføre tale, fortsatte allikevel morsesignaler å være i vanlig bruk. Det viste seg at et system med pipetoner var lettere å oppfatte når det var dårlig radioforbindelse, og man trengte mindre effekt for å få frem meldingene. En radiosender med mindre effekt er lettere og billigere, og egner seg i bærbart utstyr.

Mens profesjonell bruk av morse mellom skip og landstasjoner ble avviklet i år 2000, er det fortsatt mange radioamatører som bruker morse, og det er egne frekvensbånd som brukes til dette formål. Bruk av morse er

  • morsomt, fordi det krever øvelse
  • lett å kombinere med selvbygget radioutstyr
  • effektivt, signalene når over lange avstander med lav effekt og enkle antenner

Morsetrening

Morsealfabetet er lett å være, det finner du mange steder på nettet. Her ser du en slik tabell hvor de korte pipesignalene er vist som prikker, de lange som streker.

Det er grunner til at du ikke anbefales å pugge morse som prikker og streker, fordi det kommer til å hindre deg i å oppfatte signalene som bokstaver og ord når hastigheten øker. Det er mye bra programvare gratis tilgjengelig som trener deg i nettopp dette.

Men det er også viktig å trene morse sammen med andre, hvor dere kan sende til hverandre på skift og lage en faktisk samtale. Slik trening vil lære dere å bruke de vanligste forkortelsene, be om repetisjon av deler av meldingen ved behov osv. Dessuten er det morsommere å lære noe nytt sammen med andre. Om du allerede er radioamatør med tilgang til en radiostasjon kan du øve med virkelige radiosendere, i motsatt fall må du bruke andre overføringsmekanismer, som f.eks.

  • En internet taletjeneste (Messenger, Zoom, Skype m.fl.)
  • Lydsignaler i luft

I begge disse tilfellene ovenfor trenger du en morsenøkkel og en “piper” som avgir et pipesignal når du trykker ned spaken på morsenøkkelen. Som du ser her er en morsenøkkel ganske dyr, men du kan selvsagt lagt din egen fordi det er bare en enkel elektrisk bryter.

Alt i ett med Micro:Bit v2

Micro:Bit er en mikrokontroller som inkluderer en del brytere, sensorer, radio, lamper og lydgivere og koster ca kr.400,- (version 2 kreves for dette formålet). Den kan programmeres og brukes til mange formål, og vi har laget programvare slik at den kan brukes til morsetrening. Programmet er gratis og kan lastes ned fra denne siden via en link lenger ned.

  • Bruker knappene på kretskortet som morsenøkkel
  • Brukere lydgiver og lamper på kretskortet for å vise/spille morsesignaler
  • Bruker den innebygde radioen for at flere deltakere kan sende og motta signaler
  • En “virkelig” morsenøkkel kan koples til kretskortet om ønskelig

Med Micro:Bit v2 og den nødvendige programvaren har en gruppe med deltakere alt de trenger for å sende og motta morsesignaler over radio (men med kort rekkevidde, opp til ca 10 meter).

Innlasting av programvaren

  1. Last ned filen CWtransceiver.hex
  2. Kople MicroBit til PC med en USB-kabel
  3. Nå vil det vises en ny “disk” i FileExplorer, kalt MICROBIT
  4. Kopiere CWtransceiver.hex til denne “disken” (drag and drop i FileExplorer)

For å teste at programvaren er riktig installert, trykk ned Button A (på venstre side av kretskortet. Da skal du høre en pipetone.

Bruksanvisning for morsetreneren

  1. Du kan bruke treneren alene for å øve sending av morsetegn. Da bruker du Button A for å lage pipelyd.
  2. Om flere Micro:Bit-enheter er i nærheten av hverandre, vil signaler som sendes på en enhet spilles av med pipelyder også på de andre enhetene. Der vil også led-lampene på kretskortet lyse opp i samme takt.
  3. Om du berører touch-sensoren (på forsiden av kretskortet like ved USB-kontakten, den har to prikker med en oval rundt), vil LED-displayet skiftevis vise “P” og “S”. Om du vil sende morse slik som vist ovenfor (kalt “Straight Key”) skal det vises en “S” i displayet. Dersom det står en “P” i displayet vil Button A og Button B utgjøre en såkalt paddle keyer. Dette er en mer effektiv måte å sende morsetegn på, men den krever litt øvelse for å beherske. Demonstrasjonsvideoen i starten viser hvordan den kan brukes.
    * Button A gir en serie med prikker mens den holdes nede
    * Button B gir en serie med streker mens den holdes nede
    * Begge knappene nedtrykket gir en serie med skiftevis prikk og strek
    * Mens Button A holdes nede, kan Button B gis et kort trykk. Da vil streken bli sendt ferdig, deretter en prikk før strekene igjen blir sendt. Tilsvarende gjelder i motsatt retning.
  4. Om du ønsker å endre hastigheten på prikker og streker i “P” (paddle keyer) innstillingen gjør du som følger:
    * Hold Button A nede slik at du hører en serie prikker bli sendt.
    * Snu kretskortet på høykant til høyre (slik at Button A er øverst). Da vises en høyrepil i LED-displayet og du hører at hastigheten på prikkene øker. Rett opp kretskortet når hastigheten er passe. Tilsvarende senkes hastigheten om du snur kretskortet til venstre (da vises en venstrepil).

Communication between DMR and a computer network

 280 total views

Anders Fongen, November 2022

Abstract: The integration of a sensor network with services from voice communication, text messaging and Global Positioning System (GPS) creates opportunities for improved situational awareness, better safety for field operators, higher confidence in sensor readings and improved return on equipment investment. Digital Mobile Radio (DMR) has been the choice of communication technology for a series of experiments where these potentials have been investigated. Additional technology components used were mostly inexpensive and open source.

The article was published in the The Sixteenth International Conference on Sensor Technologies and Applications (SENSORCOMM 2022) October 2022, Lisbon Portugal.

Demonstration videos

Below are two demonstration videos from the integration experiment, view these if you are not into reading academic papers:

The first video shows how to integrate a DMR radio into an pub-sub network using the MQTT protocol.

Demonstration video from the integration experiment – pubsub intergation

The second video shows how two MMDVM units can provide routing of IP packets across a DMR radio link.

Demonstration video from the integration experiment – IP routing

Full text of article

Download source code

This link allows you to download the source code in the form of a compressed tar file. Please observe that this is experimental code not meant for production, and:

  • The module gwtest.py is the root module, and the execution starts there
  • You will need to import the module dmr_utils3, paho-mqtt, netifaces, etc.
  • You will need to inspect the source code and modify values for ip-addresses, DMR-ids, UDP port number, MQTT topics etc.
  • You need to configure pi-star so that it connects to the Controller at its IP-address.
  • The code also includes code to route IP-packets over a DMR link. Un-comment this code if necessary, but this will require the program to run in root mode (sudo…)
  • If you make improvements and want to share them with me, you are welcome to contact me. Please accept that I cannot spend much time on advice and support otherwise.

The QYT KT8900 radio with an Allstarlink node

 567 total views,  3 views today

Good news: The QYT KT-8900 and KT-8900D radios are well suited for running an Allstalink node. The configuration menu REP-M (#43 on KT-8900, #51 on KT-8900D) allows two radios to make a repeater by connecting a cable between the two microphone connectors (RJ45 plugs). The configuration feeds a RPT-CTLR signal when the squelch opens (or subtone received) through the mic connector which is wired to the PTT on the other radio.


The RPT-CTLR is effectively a COR signal which can be wired to the DMK URI for Allstarlink operation, and no modification to the radio circuit board is necessary. As a proof of concept, I sacrificed an ethernet cable and soldered a DB25 plug on it according to the wiring shown on the picture. This works as expected and with good sound quality. The KT-8900D offers much radio for the money, and I believe it should be interesting for use in private Allstarlink nodes.
The RPT-CTLR is active low, so you need to set “carrierfrom=usbinvert” in simpleusb.conf


After 3 hours operation on 95% duty cycle, the radio is only lukewarm, using low output power (10w)

The Allstalink node connected to the Mic connector of KT8900D

The wiring arrangement for the DB25 and the DMK URI board